Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 112022 11 16.
Article in English | MEDLINE | ID: covidwho-2119277

ABSTRACT

Background: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear. Methods: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions. Results: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct <30) 5 days post detection, with small differences across variants and vaccination status. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+days with Ct <30 following an initial clearance of 3+days with Ct ≥30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals. Conclusions: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines. Funding: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association.


Subject(s)
COVID-19 , Dermatitis , Humans , Aged , SARS-CoV-2/genetics , RNA, Viral , Retrospective Studies , COVID-19/epidemiology , Antibodies, Viral
2.
Immunity, inflammation and disease ; 10(6), 2022.
Article in English | EuropePMC | ID: covidwho-1863932

ABSTRACT

Introduction The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS‐CoV‐2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced‐based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT‐PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. Methods Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID‐19) with the TaqPath COVID‐19 RT‐PCR Combo Kit (ThermoFisher) in four CLIA‐certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA‐certified clinical laboratories in the United States (n = 422,330). Results TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS‐CoV‐2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. Conclusions According to the proposed evidence‐based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self‐quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF. The evidence‐based Molecular Epidemiology and Genomic Surveillance algorithm, developed in this study to quickly identify emerging Variants of Concern (VOCs), is a valuable tool for identifying individual carriers of highly infectious variants with the S Gene Target Failure (SGTF) feature, such as Alpha and Omicron, who can then be effectively triaged for isolation, contact tracing, and treatment purposes.

3.
Immun Inflamm Dis ; 10(6): e634, 2022 06.
Article in English | MEDLINE | ID: covidwho-1850065

ABSTRACT

INTRODUCTION: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS-CoV-2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced-based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT-PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. METHODS: Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID-19) with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA-certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA-certified clinical laboratories in the United States (n = 422,330). RESULTS: TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS-CoV-2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. CONCLUSIONS: According to the proposed evidence-based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self-quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Precision Medicine , SARS-CoV-2/genetics , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL